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ABSTRACT

Fault tree analysis has proved to be a useful analytical
tool for the reliability and safety analysis of complex sys-
tems. This is a semi-expository introduction to the mathe-
matics of fault tree analysis. Many of the concepts of coherent
structure theory have been used. Bounds on the system relia-
bility when components are dependent (that is, are associated)
are given. Algorithms to find the min-cut-sets and related
bounds, together with various means for computing the proba-
bility of the Top Event are presented. Measures of event
importance are discussed. Numerical examples are presented
to illustrate the concepts.
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CONFERFENCE ON RELIABILITY AND
FAULT TREE ANALYSIS

The purpose of the conference is to bring forth recent
developments in the fields of Reliability and Fault Tree Analy-
sis. Models, concepts and methods of quantitative analysis in
both fields have significant similarities. This conference, for
the first time, will provide a ground for the exchange of ideas
among various groups that have been following independent paths.

SESSLONS WILL INCLUDE:

L. Taalt Tree Construction

2. Fault Trece Analysils

3. Coherent Structwres and Combinatorics

4. Statlistical Problems In Reliability and Fault Tree Analysis
5. Network Reliability

6. Computer Reliabillty

-~

Applications to Huclear I'over Reactors and Other Fields

Apart from these sessions, an organfzed panel discussion will
be schaduled to briog forth unsolved but crucial problems in these
areas.

The conference vill be held b the University of California,
Berkeley Campus, {rom September 3 to September 7, 1974. 1In the
unique setting of the San Franclsco Bay Area, the confercnce will
provide both professional excellence and a taste of cosmopolitan
living.

The veglstration fee is $25.00. For further information, contact
P. Chatterjee, Operations Research Center, University of California,
Berkeley, California 94720 (415) 642-4993.

Program Committee:

R. E. Barlow
P. Chatterjece
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INTRODUCTION TO FAULT TREE ANALYSIS

by

Richard E. Barlow and Purnendu Chatterjee

0. INTRODUCTION AND SUMMARY

This is a semi-expository introduction to the mathematics of fault tree
analysis., The literature on fault tree analysis is, for the most part,
scattered :hrough conference proceedings and company reports. Therefore, we
feel that a readable, logical introduction to the subject is very much needed.
A discussion of fault tree construction may be found in Lambert (1973)., A
description of fault tree concepts and techniques can also be found in Fussell
(1973). Vesely (1970) has considered fault tree analysis from the point of
view of computer implementation.

Our main contribution is to develop a mathematical theory of fault tree
analysis using many of the concepts of coherent structure theory {Birnbaum,
Esary and Saunders (1961)] and to show how dependent events may be analyzed.

It has been observed by reliability theorists that many of the quantities
computed by fault tree analysts can also be computed using the concepts and
techniques of reliability theory. While this is true, we feel that the tree
structure used by fault tree analysts and the somewhat different problems of
interest to fault tree analysts, warrant a separate development.

In Section 1 we present some examples of fault trees and the symbols used.
In Section 2 we describe some algorithms due to J. Fussell (1973) for analyzing
fault trees. Dual fault trees and their uses are described in Section 3.
Section 4 (s a lengthy development of methods for probability evaluation of
fault trees. New results on computing probabilities for trees with dependent
avents are presented. Section 5 considers measures of event importance. Many

concepts are illustrated using the pressure tank example introduced in Section 1.
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1. FAULT TREES

To construct fault trees we employ the following useful symbolism. Com-
ponent states or, more generally, basic events will be represented by circles

and diamonds. A system event of major importance will be represented by a

rectangle

Top Event

called the Top Event, appearing at the top of the fault tree. For example, this
may indicate a particular type of system failure. Intermediate system or sub-
system events will also be represented by rectangles. Immediately below each

rectangle will be either an AND gate represented by

Output

Inputs

AND GATE
or an OR gate represented by

Output

Inputs
OR GATE

The output event to an AND gate occurs if and only if ali input events
occur, It is helpful to put a dot (for set product or intersection) in the
center of the AND gate. For example, to symbolize that if each of the events

A,B,C, and D occur, then the event E will occur, the fault tree analyst

would draw
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FIGURE 1: AND GATE ;
The output event to an OR gate occurs if one or more of the input events i
occur. It is helpful to put a plus (for set sum or union) in the cevrter of the ;

OR gate., For example, E occurs if one or more of the events A , B, C or D

occurs in Figure 2.

FIGURE 2: OR GATE

Repetition of basic events is permitted in a fault tree.

Example. One-out-of-Two Twice System.

Figure 3 symbolizes a system whose function is to shut down a nuclear power

plant in the event of a low coolant pressure. The 2-out-of-2 coincidence unit

produces a trip signal provided that the "OR" unit in both the upper and lower




branches simultanecusly produces an output signal. Such logic is called one-out-
of-two twice. Units c:1 through ¢, are pressure switches. The :lth switch
will produce an output signal (we call this basic event 1) if the pressure Py
drops below a prescribed value, 1 =1, ..., 4 . A fault tree for thie system

with Top Event, "Sptrious Trip Signal Produced," is showm i. Tigure 4.
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FIGURE 3: ONE-OUT-OF-TWO TWICE SYSTEM
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Example. Pressure Tank Svstem.

Consider the pressure tank engineering diagram in Figure 5. Let the ]op
2

event (which we wish to prevent) be the rupture of the pressure tank. To start

TN oY e

pumping, the switch S1 (a push button) 1s closed and then immediately opened.
This allows current to flow in the control brarch circuit which activates relay
§ coil K2 . Relay contacts K2 then close and start up the pump motor. After
i a period of approximately 20 seconds, the pressure switch contacts open (since
excess pressure is detected by the pressure switch), deactivating the control
circuit which de-energizes the K2 coil. The K2 contacts then open and shut
off the motor. If there i1s a pressure switch malfunction, then the timer relay
contacts open after 60 seconds, de-energizing coil K2 , and shutting off the
pump. The timer resets itself automatically after each cycle.

The fault tree drawn in Figure 6 is based on an analysis of the possible
failure modes of the system. Circles represent primary basic events, while
diamonds represent secondary basic events. For example, if the K1 relay con-
tacts (Figure 5) fail to open under normal operating conditions (i.e., within
3 the "design envelope"), this is considered a primary basic event. If the Kl

relay fails to open because the wrong relay was installed, then this is con-

1 sldered a secondary basic event. A systematic method for drawing fault trees €

has been developed by David Haasl (1965). The pressure tank example is due to i
¢ 3
X Haasl [cf. also Lambert (1973)].
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Generally, fault trees serve three purposes:

In safety analysis, a fault tree aids in determining the possible causes

of an accident. When properly used, the fault tree often leads to discovery
of failure combinations which otherwise might not have been recognized as
causes of the event being analyzed.

The fault tree serves as a display of vesults. If the system design is

not adequate, the fault tree can be used fo show what the weak points are
and how they lead to undesirable events. If the design is adequate, the
fault tree can be used to show that all conceivable causes have been con-
sidered.

The fault tree provides a convenient and efficient format helpful in the

computation of the probability of system failure.
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2. MINIMUM CUT SET ALGORITHM

A cut set 1s a set of basic events whose occurrence causes the Top Event
to occur. A cut set is mintmal if it cannot be reduced and still insure the
occurrence of the top event. A listing of minimal cut sets (or min out gets)
is useful for design purposes in order to determine the "weakest 1links' in the
system.

For a fault tree with perhaps hundreds of gates and hundreds of basic
events it is clearly not easy, nor in general possible, to determine all min
cut sets by inspection. An algorithm is therefore required to generate all
min cut sets. The nlgorithm is based on the fact that an AND gate always in-
creases the size of a cut set while an OR gate always increases the number of
cut sets. The algorithm obtains cut sets such that, if all the primary events
were different, the cut sets so generated would be precisely the minimal cut
sets. When this 1s not the case, the cut sets generated by the algorithm are
then reduced to minimal cut sets. This algorithm was first stated by J. Fussell
and W. Vesely (1972).

The simplest and clearest way to explain the min cut set algorithm is to
illustrate its operation in an example. Figure 7 is a relabelling of the basic
events and gates in the pressure tank fault tree described in Figure 6. AND
and OR gates are labelled G- 1 through G-8. The algorithm begins with the gate
immediatelv below the top event, which we label G-0. If G-0 is an OR gate,
each input is used as an entry in separate rows of a list matrix. If G-0 is
a1 AND gate, each input 1s used as an entry in the first row of a list matrix.
Since in Flgure 9, the gate immediately below the top event is an OR gate we

begin the construction of our list matrix by listing {inputs 1 , G-1 , and 2

in separate rows as follows:

y*mwwwﬂﬁﬁﬁr
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Since any one of these input events can cause the top event to occur, each will ]
be a member of a separate cut set.

The idea of the algorithm is to replace each gate by its input gates and

basic events until a list matrix is constructed, all of whose entries are basic

events. The rows will then correspond to cut sets.

Since G-1 is an OR gate, we again replace G-1 by its input events in separate }

rows as follows:

1
4
5
G-3
3
2. H
Since G-3 is an AND gate, we replace the row containing G-3 by its inputs as i
follows: j
1
4 ]
i

w
vaem

G-4 ,G-5
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Since all inputs to an AND gate must ocrur to cause the corresponding inter-
mediate event above the AND gate, we see that an AND gate incr2ases the length
of its row. An OR gate, on the other hand, increases the number of rows in

;‘ our list matrix.

Replacing G-4 by its inputs, we have

Continuing in this fashion we eventually obtain a list matrix with 29 rows.

e o

These are (in a different order),

1 7,9 8,9
2 7,10 8,10
3 7,11 8,11

4 7 4 02 8, 12 i\
5 7,13 8, 13 j
6,9 7, 14 8, 14
6, 10 7,15 8, 15 : %
6, 11 7, 16 8, 16
6, 12

6,13

6, 14

6, 15

6, 16
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In the pressure tank fault tree (Figure 7), basic events are not repeated.
For this reason all of our cut sets are minimal cut sets; i,e., no one cut set
is contained in any other cut set. More generally, with replication of basic
events in the event tree, we will not obtain only min cut sets by this algorithm.
Therefore it will be necessary, in general, to reduce the list, eliminating cut
sets which contain other cut sets. The resulting list will then contain all min
¥ cut sets for the fault tree.
¥ The cut sets obtained by the above algorithm are called Boolean Indicated
Cut Seta (vr BICS) since they will not, in general, be minimal. It is a simple
matter to determine the number and maximum size of BICS for a fault tree. For
£ large fault trees this should be done before applying the min cut algorithm in

order to dimension the list matrix.

4 An Algorithm for Determining the Number of BICS

The number of BICS is an upper bound to the number of minimal cut sets.

It i1s, perhaps, easiest to explain the algorithm by an example. We consider

the pressure tank fault tree in Figure 7 once again. First, assign weight 1

to each of the 16 basic events. Next, assign weights to each gate starting

F_ from the bottom until we reach the top. The weight assigned to the Top Event

‘ will be the number of BICS. To an OR gate we assign a weight correspond to

4 the sum of the weights of events input to the OR gate; thus, gates G5, G6

and G8 are each assigned weight 3 . Gate G7 1is assigned weight 5 since

input events 12 and 13 each have weight 1 . Gate G4 1s assigned weight 8 .
To an AND gate we assign a weight corresponding to the product of the weights

of the input events. Hence, gate G3 1is assigned weight 24 . Gate G2 1is

assigned weight 26 while gate Gl 1is assigned weight 27 . The Top Event is

assigned weight 29 . This 1s precisely the number of BICS founu by the min cut

, i algorithm. [See Fussell (1973).])
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An Algorithm for Determining the Maximum Number of Basic Events in any BICS

As in the previous algorithm, we begin by assigning weight 1 to all
basic events. However, we employ a different method of assigning weights to
gates. Again, consider the pressure tank exemple 'n Figure 7. To an OR gate
we assign u weight corresponding to the maximeom of the weights of input events.
Thus, gates G5 , G6 and G8 are assigned weight 1 . Likewise, gates G7
and G4 are assigned weights 1 .

To an AND gate we now assign the sum of weights corresponding to inmput
events. Thus, gate G3 has weight 2 . Likewise, gates G2 , G1 and, finally,
the Top Event have weight 2 . Recall that the maximum length of BICS obtained
by our min cut algorithm for the pressure tank examples was also 2 . In gen-
eral, this algorithm will only obtain an upper bound on the maximum size of min
cut sets. [See Fussell (1973).]

See Chatterjee (1973) for a rigorous presentation and proofs of the pre-

ceding algorithms.

o
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3. DUAL FAULT TREES

If the Top Event occurs we have system failure. This is of great interest

T —_—

from a safety point of view. However, from a reliability point of view, we are

-

also interested in the nonoccurrence of the Top Event. To draw the dual fault
tree, replace OR gates by AND gates and AND gates by OR gates in the original
fault tree. Events are also replaced by their corresponding dual. If the Top ?
Event is "pressure tank rupture” as in Figure 6, the dual event is "no pressure
tank rupture.'" More generally, dual basic events correspond to the nonoccurrence
of the original basic events. The dual fault tree for the pressure tank example 4
is drawn in Figure 8. .
The min cut sets for the dual fault tree are the min path sets for the
original fault tree. A path get is a set of basic events whose nonoccurrence
insures the nonoccurrence of the Top Event. A path set is minimal if it cannot
be further reduced and still remain a path set. To find min path sets for a
fault tree, draw the dual fault tree and use the min cut algorithm to find the
minimal cuts for the dual fault tree. The min cut sets for the dual fault tree 3

in Figure 8, are the min path sets for the original pressure tank fault tree of

Figure 7. They are
{1',2',3',4',5',6',7',8"}
{1',2',3',4',5',9',10',11',12',13',14",15',16"'} .

(We use primes to indicate dual events.) If all basic events in either of these
min path sets do not occur, the Top Event in Figure 7 does not occur, i.e., the

pressure tank does not rupture. Since there are only 2 min path sets as con-

R IO BT e

trasted to 29 min cut sets, 1t will be easier to compute probabilities later

using the min path sets.

B ialims
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Example. The One-oui-f-Two Twice System.

The one-out-of-two twice system fault tree is presented in Figure 4. The
min cut sets are {1,3} , (1,4}, {2,3}, and {2,4} . If the coolant pressure
18 not low, the occurrence of any one of the four min cut set events would pro-
duce a spurious alarm.

The dual of the fault tree is presented in Figure 9. This fault tree has
two min cuts {1',2'} and {3',4'} . These are min paths for the original
fault tree. There are thus only two min path sets in the original event tree
which could cause the failure of a trip signal when low coolant pressure is
actually present,

From this analysis (which neglects event probabilities) we see that the
system has been designed to ensure valid alarms when low coolant pressure is
present. However, it would appear prone tc the production of false alarms
since there are four min cut sets, any one of whose occurrence could cause a
false alarm. A two-out-of-three system, for example, would be less prone to

false alarms.

Relay Circuits

Yet another apnlication of the dual fault tree concept is to relay circuits.
Suppose like relays are subject to two kinds of failure: failure to close and
failure to open. Similarly circuits constructed from these relays are subject
to two kinds of failure: fallure to close; i.e., no closed path is achieved
from input wire to output wire when the circuit is commanded to close, and
failure to open; i.e., a closed path exists from input wire to output wire
even though the circuit is commanded to open.

If we construct a fault tree for such a circuit with Top Event-"Failure
to Close", then rhe dual fault tree would have the dual Top Event-"Failure to

Open'. Thus, having constructed a fault tree for one kind of failure, the dual

tree can be used to solve the second kind of failure.
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4. PROBABILITY EVALUATION OF FAULT TREES

A major goal of fault tree analysis is to calculate the probability of
occurrence of the Top Event. However, it may also be useful to calculate the
importance of min cut sets to the Top Event or the importance of specified
basic events to the Top Event. We first review the most commonly used methods
for calculating the probability of occurrence of the Top Event and then present
new results for the case of dependent events. To make these calculations it is
useful to introduce a Boolean representation for fault trees similar to that
used for coherent structures [Birnbaum, Esary and Saunders (1961)].

Let

1 1if basic event 1 occurs

0 otherwise .
Let Y = (Yl,Yz, Do0n Yn) be the vector of basic event outcomes. Define

1 4if the Top Event occurs
p(Y) =
0 otherwise .
¢ 1is the Buolean indicator function for the Top Event. We assume henceforth
that each basic event occurs in the union of all min cut sets; i.e. all basic
events are relevant to the Top Event.
The Boolean indicator function can be determined from either the min cut

sets or the min path sets. It will bz convenient to introduce the notation

m m
1Y, %1 a-v,).
{=1 fm1

Min Cut Representation.

Let 1(1,1(2. ole/isFy l(k be the min cut sets of basic events for a specified

fault tree. Then

. o g L
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is the so-called min cut representation for ¢ .

Min Path Representation.

§ Let P_,P., ..., P_ be the min path sets of basic events for a specified
172 P
; fault tree. Then
P
\U(X_) = I )i Yi »
r=1 iePt

is the so-called nin path representation for y .
It is visibly obvious from either the min cut or the min path representation

that ¢ 1s coordinatewise nondecreasing.

Example. Pressure Tank System.

Let Y = (Yl’YZ’ ey Y16) be the random vector for basic event outcomes
in the pressure tank event tree in Figure 7. Let ¢(Y) = 1 {f the top event
occurs for outcome vector Y ; i.e., the pressure tank muptures, and y(Y) = 0
otherwise. Then using the min path sets (1,2,3,4,5,6,7,8} and {1,2,3,4,5,9,

10,11,12,13,14,15,16} and the min path representation, we see that

V() = oy )T ¢
(15158 1)(11‘6.7,8 1)

8
~li-1 a-ypllt- 1 oa-1».
[ 1=1 1][ 1$6,7,8 1]

Since there are 29 min cuts for this example, the min path representation 1is
easler to work with,

To calculate the probability of the Top Event which in this case is pressure

tank rupture, let

R T T
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P[Yi =1] = EY, = 9

be the probability that basic event 1 occurs where E stands for expectation.

For the moment, assume all basic events are statistically independent. Then

| P[Top Event] = Ey(Y)
8 16
(4.0) =1- 10 (1- qi) - n Q- qi) + 1 Q- qi) 9
i=] 1$6,7,8 i=1
g
g- Assume that basic event 1 (di.e., the pressure tank itself fails) occurs on
5

the average once in 108 loading cycles or in other words, q " 10-8 . Assume
é basic event 1 (1 # 1) occurs on the average once in 105 loading cycles or,

in other words, q, = 10 for 141 . Then

5 -8 =57 -8 =52
‘ B =1-(1-100a-10) - a-107%a-107)
15
+a-108%a-107% .

P R

Hence

EGQY) ~ 4 x 107° .

Boolean Reduction.

In principle we can always compute the exact probability of the top event
by reducing the Boolean expression, Y(Y) , for the fault tree. We do this

using the fact that for Boolean variables

2
Yi Y1 .

In general, once we get rid of powers of the indicator variables we can
obtain the probability of the tor event by merely substituting in probabilities
for indicator variables.

If there are 7o replications among min cut sets qnd basic events are
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statistically independent

(4.1) P[TOP EVENT] = I n 9 -
1<s<k :le:l(B

If there are 70 replications among min path sets and basic events are

statistically independent then

4.2) P{TOP EVENT] = Il I oq -
1l<r<p isPr

Min Cut and Min Path Bounds.

(4.1) and (4.2) are not valid in general. However, if basic events are

statistically independent

(4.3) Tt b oq < P[TOP EVENT] < I no9
l<r<p 1€Pr 1<s<k :I.t:l(s

is always true. The upper bound is in general quite close when the qi's are
small, which is the usual situation. (4.3) is proved in Esary and Proschan

(1963).

The Inclusion-Exclusion Principle.

This is another method based on min cuts and can be used to obtain close
bounds forllarge fault trees. Let I-I8 be the event that all basic events in
min cut set K occur. We also assume all basic events are statistically
independent. Then

P(E)= T gq, .
2 1.(»:1(8i

k
The top event corresponds to the event Ul Es if the fault tree has k min
8-

cut sets. Hence

A i3, ——— L e —— - e
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k
PITOP EVENT] =P | U E g
s
s=1

Let

5= ) P[E Nne n...nE].
r i i i
1< <dp<o. <l <k 1 2 T

By the inclusion-exclusion principle

: -1
P(TOP EVENT] = ] (-1)"s_
r=1

and

k
P[TOP EVENT] <5, = ] I q,
s=1 1eKB

P[TOP EVENT] > §; - S,

P[TOP EVENT] < S, - §, + §

1 2 3

The successive upper and lower bout.ds, however, do not necessarily converge in

a monotone fashion.

Dependent FEvents.

If occurrences of basic events are not statistically independent, then the
previous methods, based on assumed independence of basic events, are no longer
valid. If we know that basic events are positively dependent (the technical
term we shall use is associated) then we can obtain useful bounds on the proba-

bility of the Top Event. First, however, we need to introduce another Boolean

representation for fault trees.
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The Min-Max Representation.

Let Kl'KZ’ 000 Kk be the k min cut sets for a fault tree. Then we

can easily verify that

(4.4) v({) = max min Y, .
! 1<s<k 1eK

For, 1f all basic events in min cut set, say K.‘l , occur, then min Yi =1
{ ieK 5
: 3

and ¢(Y) =1, i.e. the Top Event occurs. Likewise, if min Yi = 0 for all

ieK
=

1<s <k, then ¢(Y) =0 and the Top Event does not occur,

e

Sometimes it is easier to develop the fault tree structure function using
the dual representation based on min paths. Let Pl’PZ' Alters Pp be the min

path sets for as specified fault tree. Then 1

v(¥) = min max Y .

lerep gep 1 !
]
If j:nan Y, = 1 for 1 <r <p, then a basic event occurs in each min path, "
€
, r

E i.e., the Top Event occurs so that ¥(¥) =1 . If 1man ¥, =0 for some r,
€ ‘
T §

then there is a min path set whose basic events do not occur so that the Top

Event does not occur, i.e. Y(Y) = 0 .

Bounds on the Probability of the Top Event.

We now assume that events are agsoctated:

Definition:

[Esary, Proschan and Walkup (1967)]. Random variables Tl’TZ' A Tn are

associated 1if

Cov [I(I),A(T)] > 0




for all binary, increasing functions T and 4 .
In a great many reliability situations, the random variables of interest

are not independent, but rather are "associated". As examples, consider

(a) indicator functions of min cut sets which have basic events in common;
(b) components subjezted to a common environment;
(c¢) structures in which components share the load, so that failure of one

component results in increased load on each of the remaining components.

In case (a), if the basic events are independent, the min cut indicator
functions are asscciated and not independent. Examples (b) and (c) are physical

situations which could lead to associated indicator random variables.

Theorem 4.1:

If indicator random variables Yl’YZ’ 0.0 Yn are associated, then

(4.5) max I q < P{Top Event] < min [ q -
l<a<k ek, l<r<p it-:Pr

Note that, in contrast to (4.3), the lower bound depends on min cut sets.

Proof:

The following always holds

min Yiiyp(x) < max Y
ieKs iePr

i

for all r (1 <r <p) and 8 (1 <8 <k). It follows that

max Plmin Y, =1] <P[y(1) = 1] < min Plmax ¥, = 1] !
1<s<k ieK8 l<r<p iePr

is8 always true.

Since Y,,Y

12 Y9 coes Yn are assoclated
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(4.6) E I Yi > I 9y
ieK8 :leKs
and
(4.7) E 1 Y1-<- I oq
:LePr iePr

[Esary, Marshall and Proschan (1967)]. (4.5) follows from the observation that

min Yi = I Yi

/ ieKs 1eK8
£
and
1 i
S Y Y, .||
max = q g
1eP E 1eP &
r T
E If basic events are statistically independent and the qi'a are small,

: the upper bound in (4.3) will very likely be the better bound. However, for
large values of the qi's , (4.5) may provide the better bound. To illustrate

this, consider a fault tree with min cut sets
K, = {1,2} , K, = {1,3} , Ky = {1,4} , K, = (2,3}, Kg = (2,4}, Ko = {3,4} .

For simplicity suppose 4q; = q, = 93 79, =9 - The upper bound in (4.3) 1is
1-(1- q2]6 while the upper bound in (4.5) 18 1 - (1 - q)3 .  The min-max

; upper bound is smaller than the min cut upper bound when q > .62 .

Example: The Pressure Tank.

Assume q = 10"'8 and q, = Qg = -or " Qe = 10-5 . Then

Ply(¥) =11 < min  § g, ~7 x 107 .

1<r<2 ieP,

On the other hand
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PY(Y = 11> max T q ~107 .
1<8<29 1eK

Hence, assuming only that basic events are associated, we have
5 5

10~ < P[Top Event] < 7 X 10° .

Modules.

B e e S — -

! A module of a fault tree is a set of basic events M , together with an

indicator function Xy » such that

¥ - r[xuq”) .1“']

where T 18 nondecreasing and _‘{M means the coordinates of Y are restricted
to M . Modules were described for coherent structures by Birnbaum and Esary
(1965). Decomposing a tree in terms of modules can be useful in reducing the
computation required for probabilistic evaluation of fault trees. Suppose we
can find a modular decomposition {(Ml,xl), 3000 (Mr'xr)} such that

Xl(l), o xr(g) are statistically independent, although Yi for 1 ¢ Ms

(1 < 8 <r) may be associated. Then

F(w(D) = 1] = g [Plx; (@ = 11, ..., Pix (D) = 11]

L% (4.8)
1 f_gr[uxl(ﬂ)’ seoy uxr(ﬂ)

.

where u, () is the min-max upper bound, (4.5), for module M' and 8p is
8
the expected value of I‘[xl. oao g xr] . (4.8) follows from the monotonicity |

of g - In applications, it may be useful to decompose the tree into statis-

tically independent modules and apply (4.8) rather than to apply (4.5) directly

'since (4.5) will be more conservative.




Time to Occurrence of the Top Event.

First, we suppose that once a basic event occurs, it cannot be rectified.

Suppose basic event 1 occurs at time Ti and the Top Event occurs at time T .

4
L
g
E‘
o

Let
5 1 1f T <t
L Y, (e) =
0 otherwise,
; Then P[Top Event occurs by time t]
| = E4[Y(t)]

where Y(t) = (Yl(t), r Yn(t)) , since ¢ 18 nondecreasing. If
f P[T1 <t] = Fi(t) then we can compute Ey[Y(t)] by using the previous algorithms

with q, replaced by F,(t) . In particular, (4.5) becomes
i i

i max n Fi(t) < Ep[Y(t)] < min iy Fi(t:) 5
| 1<a<k 1eK_ l<rep deP

Mean Time to Occurrence of the Top Event.

To calculate the mean time to occurrence of the Top Event we need the dis-
tribution of time to occurrence of the Top Event. Since this is often difficult
or impossible to compute, we obtain a useful lower bound on the mean.

First, we observe that

4.9) T= min max T,
l<s<k 1eK
— 8

and also

(4.10) T= max min Ti 3

l<r<p 1ePr

To see (4.9) note that the Top Event occurs as soon as the first min cut

event occurs. A specified mir cut can only cause the Top Event after the last

rTA . . e
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r E event time in the min cut set.
To see (4.10) note that the Top Event occurs after the last min path fails.
A min path set fails as soon as any event in the set occurs.
To obtain the mean time to occurrence of the Top Event, ET , one might
think of substituting mean occurrence times in (4.9) or (4.10). This will not

give the expected time to occurrence of the Top Event.

Theorem 4.2:
-log Fi(t)
. If times to occurrence of basic events are associated and ——=——
¢
3 E is nondecreasing in t >0 for i=1,2, ..., n, then
1
:
g -1
F (4.11) max [ z u;] < ET < min i Ei(t)dt
| l<r<p |ieP, 1<s<k 0 1.&:1(B
i _ ~t/ug
i where Wy = I tdFi(t) and Gi(t) = e for {1 =1,2, ..., n. (If F:l
| = -log Fi(t)
1 has nondecreasing occurrence rate, dFi(t)/Fi(t) , then =7 is non-
decreasing for t > 0 .)
Proof:
Using (4.9) and (4.10) we see that +
|
EminTiiET_gEmaxTi J
ieP ieK
r s ]
holds for 1 <r <p and 1 <8 <k . Hence
1
(4.12) max E min T/ <ET< min E max T, .
i<r<p iePr l<s<k iel(s

L

To show the upper bound, observe that

T

] P[ max T1>t]"P[ u [l-Yi(t)]'I]
3 % :I.s:l(s :I.t:l(s

e L Ao

< 1 P[Yi(t) = 0}
161(8
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by association [Esary, Proschan and Walkup (1967)]. Also

E max Ti = ) P(max T
ieK 1ekK
8 ]

e tldt

@ 4

{ : <| U ply(e) =o0lde <) u G(v)ae {
ieKs ieKS j

e

-log fi(t)

since Fi(t) - P[Yi(t) =1] , 1=1,2, ..., n have the property that e

A T

is nondecreasing, i.e. F 1is IFRA for increasing failure rates on the average.
[Marshall and Proschan (1970)]. The upper bound follows by substituting in (4.12).

To gshow the lower bound, observe that

P[ min Ti >t]=P( 1 (1- Yi(t)) = 1]
1sPr iePr

2 T Py, () = 0]
iePr

by association [Esary, Proschan and Walkup]. Also

E min T1 = § P[min T1 > t]dt ]
et 1eP §
T r i

i
:} mP[Y,(t) = 0)de > | T G (t)de '
0 1eP 1eP i

r T

-1
-1
SR
: [ieP 1
k r -

again using the IFRA property of F

{ (1=1,2, ..., n). The lower bound follows

by substituting in (4.12).]|

Example. The Pressure Tank.

s

Suppose ETi = 108 cycles and ETi =- 105 cycles for 1 > 1 . Then, using K

i b F R E e DO kb e e e o -y . R il ot . u.r"“
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the min path sets

ET > max (14,283, 8,332] = 14,283 cycles.
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5. MEASURES OF EVENT IMPORTANCE

The next step after obtaining the fault tree minimal cuts ies to determine
the relative importance of basic events to the occurrence of the Top Event.
From the list of min cuts for the pressure tank example, it is intuitively
clear that basic events 1 , 2 , 3, 4 and 5 are the most important since
each 1s a one component min cut. However, the relative importanée of the
remairing basic events is less clear.

Suppose the Top Event occurs and we perform an autopsy to determine the
cause. In practice we may find that several min cuts have occurred. However,
1f we think of events occurring sequentially in time and suppose two or more
events cannot occur precisely at the same instant, then there must have been
one event which "caused'" the Top Event.

In order to compute the probability that basic event 1 causes the Top
Event, let Fi(t) be the probability that basic event 1 (i = 1,2, ..., n)

occurs before time t . We also assume Fi continuous. Let Py = 1- 9 and
h(p) = 1 - Ep(Y)

be the probability that the Top Event does not occur where p = (pl,pz. 500N pn) 5
If all basic events have the s me occurrence distribution (or have approximately

equal occurrence rates) then it 1s shown in Barlow and Proschan (1973) that
(5.1) (h(1,,p) - h(0,,p)]dp

is the probability that basic event 1 causes the Top Ever.t, where

B(1;,P) = h(P. «ovy Py1y4Ry oevs P)

h(oi-P) = h(p, ..., P:Oinpo vess P)
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Example: The Pressure Tank (equal occurrence rates)

From (4.0) we see that

8 16
h(p) = M p,+ T p - T p, .

i-1 1$6,7,8 i=]

For 1 =1,
7 12 15
= h(l,p) =p +p" - p
and
h(0,,p) = 0.

Hence

[h(11.P) - h(Oi.p)]dp = ,13942 ,

Assuming all events have equal occurrence rates, the likelihood that the
pressure tank causes the Top Event is approximately .14 .

More generally, let Ei be the event that basic event 1 causes the Top

Event. Then
P[E1] = e = P[ES] = ,13942
P[E6] = P[E7] = P[E8] = ,0625
P[E9] = ... = P[E16] = ,01442 .

Note that the probabilities sum to one as they should, since when the Top Event
occurs, it must have been caused by one of events 1 through 16.

Events 1 through 5 will cause 70% of the failures in this case. Note that

it was unnecessary to know the common cccurrence rate,

s

T
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Proportional Occurrence Rates.

We say that event occurrence distributionms, Fi , have proportional occur-

ren.e rates if

— — )‘1
Fi(t) = [F (1))

where ki >0,1=1,2, ..., n. It is only necessary to specify the Ai's
to compute the probability that basic event 1 causes the Top Event. The

computing formula is

A N, Mt :
(5.2) [h(li,p—) -h Oi,p— Aip dp !
where
A A1 Ai-l xi+1 An
li'p— "\AP s e P »1,p y seey P
and !

A M Mar o Ma Aa
oi’p_ = \P » sy P pO,P y *es,; P .

(5.2) 1is proved in Barlow and Proschan (1973).

Example. The Pressure Tank. (unequal occurrence rates)

Assuning basic event 1 has occurrence rate 10-8 per cycle while all other
events have occurrence rate 10_5 per cycle, we wish to calculate the probability !
of basic event 1 causing the Top Event. In this case Al = 10-3Ai for 1 ; 1. E
For convenience, let Al = 001 and Ai =1 for 1 >1 . (Actually occurrence

rates could be time dependent so long as the proportions are as assumed.) Using

(5.2) we calculate ]

P[Ell = ,0001595

D i

P[E,] = P[E;] = P[E,] = P[Eg] = .1595

= .
i R AT A iy ,J
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P[E6] - P[E7] = P[E8] = ,07617

P[E9] == P[E16] = ,016664

The importance of events 2 through 8 have increased by about 1X over the

previous example while event 1 is now negligible.

The importance of min cut sets is discussed in Barlow and Proschan (1973).

Marginal Importance of Basic Events.

ah(p)
Birnbaum (1969) proposed 3p

as a measure of the importance of basic

i

event 1 . This measure of event importance is useful for determining design

improvements based on cost considerations. Letting Py =Py= .. =p = 1/2 ,
be called this, the structural (marginal) importance of basic event 1 . This

can also be described in terms of critical path sets.

is a critical path set for basic event 1 if it is a path set containing

¢

1 such that each of its min path sets contains i1 . Let n(i) be the number of

eritical path sets for 1 . Then we define the Birnbaum importance of basic

event 1 by

) = 2™ Doy,

where n denotes the number of basic events in the event tree.
To compute n(l) , assume the Yi's are statistically independent,

EY, = EQ1 - Yi) =1/2 for 1i=1,2, ..., n, and use the formula
n-1
a(1) = " Elv(,, D) - ¥(0,,D)]
[C£. Barlow and Proschan (1973).]

Example. The Pressure Tank.

8
Use ¢(Y) = [ - n (1- Yi)] [1 - n (- Yi)] to compute
i=1

1$6,7,8

L e S
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E[v(1,0) | BY, = 1/2,1 » 1,2, ..., n]

and

Ep(O0,D | BYy = 1/2,1 = 1,2, ..., 0] .
For basic event 1 ,
15 g
n(l) = 2 1-Ej1- 1 (1- Yi) 1- i (- Yi)
{ i=1 1#1,6,7,8
1¥1

- 251y’ + w2t - @/t - 263 .
It is not hard to see that

E n(l) = n(2) = n(3) = n(4) = n(5) = 263 ,

For basic event 6, n(6) = 255.
Also n(6) = n(7) = n(8) = 255.

For basic event 9, n(9) = 7 . It is not hard to see that
n(9) = n(10) = n(11) = n(12) = n(13) = n(14) = n(15) = n(16) = 7 .
The Birnbaum importance ordering of events is therefore
1~2~3~4~5>6~7~8>9~10~11~12~13~14~15~16,

where "1~ 2" means 1 and 2 are equally important in the event tree, and
"5 > 6" means 5 1s more important than 6 in the event tree., Figure 10 pro-
vides a key to the original example of Figure 6. For example, we see that
the pressure tank itself and the K2 relay are structurally most important.

The pressure switch is next most important, while the timer, the K1 relay,

and the S1 switch are the least important structurally.




39

Basic Event Prob. Number of Critical Paths, n(i) , Description of
i i causes Containing Basic Event 1 Basic Events
rupture
1 (.000159) 263 Pressure tank failure
E 2 (.159500) 263 Secondary failure of

pressure tank due to
improper selection

3 (.159500) 263 Secondary failure of b
pressure tank to out- §
; of-tolerance conditions
1 4 (.159500) 263 K2 Relay contacts fail
i to open
i S (.159500) 263 K2 Relay secondary failure
L1 6 (.0761745) 255 Pressure switch secondary #
; failure ,
7 (.0761745) 255 Pressure switch contacts
P fail to open
!
8 (.0761745) 255 Excess pressure not )
; sensed by presiure i
actuated switch 3
9
9 (.016664) 7 S1 switch secondary failure i
' E
E | 10 (.016664) 7 S1 switch contacts fail f
E ¢ to open i
g 11 (.016664) 7 External reset actuation
E ) force remains on switch S1
¢
o 12 (.016664) 7 Kl relay contacts fail to
E . open ;
n 13 (.016664) 7 Kl relay secondary failure
b
f & 14 (.016664) 7 Timer does not "time off"
E % due to improper setting
] 15 (.016664) 7 Timer relay contacts fail
4 g to open
L § E
16 (.016664) 7 Timer relay secondary
failure

FIGURE 10: KEY TO PRESSURE TANK EXAMPLE
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6. COMPUTER PROCESSING OF FAULT TREES

In this section we give a brief description of a Fortrau program called
TREEL which has been developed for processing fault trees.

The handling of complex systems necessitates various error checks on the
input data. Fault trees are represented to the computer by describing each
gate of the tree with one card. It contains an alpha-numeric name of the gate,
type of the gate, number of gate inputs and basic event input and their alpha-
numeric names. The program 'TREEL' not only makes error checks from punching

mistakes to circular logic, but also reindexes the gates and components. The

importance of this indexing is tremendous in analyzing the fault tree in an
efficient manner.
For a system with 2000 gates and 2000 basic events we would index the

basic events from 1 to 2000 and gates by integers from 2001 to 4000. Gates

are indexed in the order they appear in the tree from the bottom, i.e. the

lowest level gates are those which have only basic events as inputs. This

indexing scheme assures us that if a gate gets index I then it has inputs
whose indices will be less than I.

Apart from indexing the gate, it also produces the Fortran equivalent of

TR

the tree logic. Thus we can evaluate the system state given the component
states.

We also obtain bounds on the number of min cut sets and max size of the
min cut sets of this tree as well as the dual tree. This information is a
valuable aid in determining which tree to work on.

We also obtain the degree of replication of the gates and basic events in

the tree. The number of times a gate is replicated in the tree is a helpful

aid in reducing storage requirements of min cut set algorithms [Chatterjee (1973)].

Subroutine XREF prints out the cross-reference table of the tree index and

the alphanumeric identification names of the gates and basic events.




e

The program is written in FORTRAN for the CDC 6400. This program has
lower storage requirements, shorter execution time and more flexibility

(1.e. is not just restricted to 'AND' and 'OR' gates) than the comparable

program of Veseley and Narum [1970]. The generalized version of the program

takes care of any gate for which the logic function 1s well defined and can

f be written as a FUNCTION routine.
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